A hydro-geophysical simulator for fluid and mechanical processes in volcanic areas
نویسندگان
چکیده
Efficient and accurate hydrothermal and mechanical mathematical models in porous media constitute a fundamental tool for improving the understanding of the subsurface dynamics in volcanic areas. We propose a finite-difference ghost-point method for the numerical solution of thermo-poroelastic and gravity change equations. The main aim of this work is to study how the thermo-poroelastic solutions vary in a realistic description of a specific volcanic region, focusing on the topography and the heterogeneous structure of Campi Flegrei (CF) caldera (Italy). Our numerical approach provides the opportunity to explore different model configurations that cannot be taken into account using standard analytical models. Since the physics of the investigated hydrothermal system is similar to any saturated reservoir, such as oil fields or CO2 reservoirs produced by sequestration, the model is generally applicable to the monitoring and interpretation of both deformation and gravity changes induced by other geophysical hazards that pose a risk to human activity.
منابع مشابه
Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera
Ground deformation and gravity changes in restless calderas during periods of unrest can signal an impending eruption and thus must be correctly interpreted for hazard evaluation. It is critical to differentiate variation of geophysical observables related to volume and pressure changes induced by magma migration from shallow hydrothermal activity associated with hot fluids of magmatic origin r...
متن کاملLearning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes
Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological featu...
متن کاملDevelopment of a Dynamic Population Balance Plant Simulator for Mineral Processing Circuits
Operational variables of a mineral processing circuit are subjected to different variations. Steady-statesimulation of processes provides an estimate of their ideal stable performance whereas their dynamicsimulation predicts the effects of the variations on the processes or their subsequent processes. In thispaper, a dynamic simulator containing some of the major equipment of mineral processing...
متن کاملDesign and Manufacturing of Jet to free Stream Simulator to Experimental Study of Interaction of Oblique Jet in Crossflow
The study of interactions of jet into cross flow at different longitudinal and transverse angles of jet was studied. The following components were designed and constructed: a low velocity wind tunnel to produce the uniform flow, a flat plate with a traverse injection system to simulate the jet injection, and a spatial rake to measure the total pressure. The tests were carried out at longitudina...
متن کاملDesign and Manufacturing of Jet to free Stream Simulator to Experimental Study of Interaction of Oblique Jet in Crossflow
The study of interactions of jet into cross flow at different longitudinal and transverse angles of jet was studied. The following components were designed and constructed: a low velocity wind tunnel to produce the uniform flow, a flat plate with a traverse injection system to simulate the jet injection, and a spatial rake to measure the total pressure. The tests were carried out at longitudina...
متن کامل